

TS5 – SUPPORTING TECHNOLOGIES FOR ANIMAL PRODUCTION COLLECTION DATA

Jonas Persson, MSc. Agr. Eng. Special Adviser RYK Fonden Denmark

ICAR 2016, Chile

RYK provides milk recording for dairy cows. RYK are collecting annually about 5.5 million milk samples, serves 3.000 dairy

farmers, and have a turnover of 16 million euro. We have 65 employees, and offices in Aarhus, Sorø, Holstebro, and Vojens.

Test day milk yield and composition records are affected by deviations in milking intervals in overly simplified recording schemes

Jonas Persson – RYK – Denmark

Uffe Lauritsen – RYK – Denmark

Last Fast Hansen – RYK - Denmark

Peter Løvendahl – Aarhus University

The issue

- Milk recording is a workload it takes time and cost money
- Can it be simplyfied further and still be valuable?

This investigation:

• How large is the increase in "noise" and "bias" in reduced recording schemes, relative to a standard, 2X measure and sample scheme?

Full and reduced recording protocols for 2X milking

• Full: 2X recording / 2X sampling

Common: 2X recording / 1X sampling - pm/am - alternating

```
    Reduced: 2X recording / 1X sampling – am
    1X recording – full interval info / 1X sampling – am
    1X recording – "fixed interval" / 1X sampling – am
    1X recording – no interval info / 1X sampling – am
```

Target traits: test day milk and ECM yield

- Milk yield kg / 24 h
- Fat yield kg /24 h
- Protein yield kg / 24h
- ECM kg / 24 h

Supplementary covariates and factors:

- Milking interval, hours
- Days in milk > grouped: 1-30; 31-90; 91-180; 181-305; 306+
- Parity > grouped: 1, 2, 3+

24 hour yields are predicted by extrapolation on recorded variables – using linear regression

Example, 2X recording / 1X sampling - mornings:

```
\begin{split} & ECM\_kg/24h = \text{ $P$arity\_group*DIM\_group +} \\ & \beta_1 \text{ morning\_fat\_kg *PD +} \\ & \beta_2 \text{ morning\_milk *PD +} \\ & \beta_3 \text{ morning\_prot\_kg *PD +} \\ & \beta_4 \text{ evening\_milk *PD +} \\ & \beta_5 \text{ milking\_Interval\_morning *PD} \end{split}
```


Reduced protocols ignore the red co-variates

Study data – Holstein herds in Denmark using full recording, but only 6X per year

- Herds, n = 121
- Parlor 20+ per TD, n herd-test-days = 3359
- Holstein Cows (n = 33,374), parities grouped 1, 2, 3+, n = 292,297 milkings

- Milk Recording: Electronic meters Tru-test
 - Time at milking
 - Yield
- Milk samples, Eurofins / Foss
 - Fat_B, Protein (Cells)
 - ECM kg/d

Full recording = reference

• ECM Yield 24h = ECM evening + ECM morning

Protocol comparison criteria

- The accurracy of extrapolated ECM is given by the residual standard deviation = "root mean square error RMSE" (small values are good)
- The "uncertainty range", can be defined as the difference between the fractiles at 5% and 95% a simple function of RMSE

- The ability to describe individual differences among cows the repeatability, a coefficient between 0.0 and 1.0. (large values are good) –
 - Sets the upper limit for heritability...
 - Calculated from variance components

Common alternating: 2X recording + 1 sample

Assumption:

fat%, protein% at am/pm change similarly with milking interval in all herds

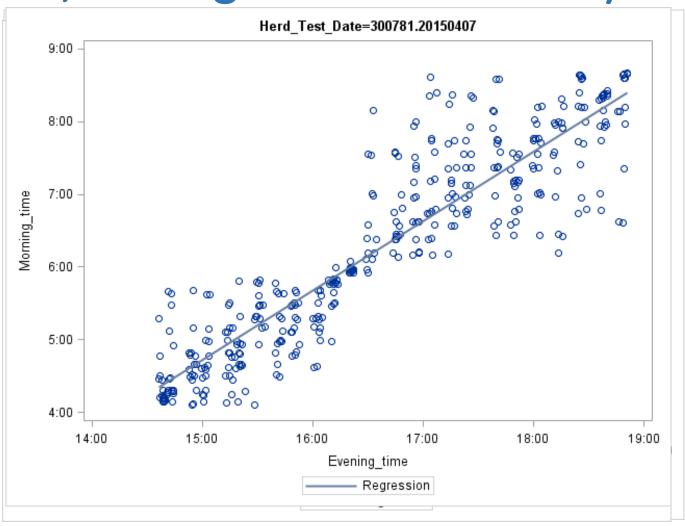
Morning

- RMSE = 1.04 kg
- Uncertainty range :
- -1.49 to +1.63 Kg

• Repeatability, t = 0.41 same as for "Full" (0.42)

Evening

- RMSE = 1.15 kg,
- Uncertainty range:
- -1.49 to +1.65 Kg


• Repeatability, t = 0.41 similar to "Full" and Morning

Reduction: Morning recording and sample – morning interval

- now without yield from evening but with milking interval
- RMSE = 2.32 kg **TWICE** that of the common protocols
- Uncertainty range: -3.26 to +3.69 ± 11%
- Repeatability, t = 0.38, less affected ("Full" t = 0.42)

Could evening information be further ignored? If milking order is stable, a common interval for all cows in a herd would do it!

Milking order is not constant! So, milking intervals also vary within test-day

Average milking interval 13:39 h

STD 0:34 h

Percentile range 5% – 95%:

12:47 to **14:45** hours

A range of 2 hours!

Similar ranges in most herds!

Reduction: **1X recording** / 1X sample - morning

With common milking interval

- RMSE= 2.41 kg
- Uncertainty range
 -3.52 to 3.82 ~ 13%
- Repeatability = 0.32

Ignored milking interval

- RMSE = 2.52 kg
- Uncertainty range
 3.74 to to 4.05 ~ 13%
- Repeatability = 0.30

Both protocols perform somewhat worse than the one having individual milking interval

Summary and Conclusions

- Reduced recording and sampling is already implemented
- "error" on each test day record increase with reduced intensity

Intended use?

Decision support at cow level: Need for very high accuracy

Breeding: Less accurate may be compensated by large numbers of cows

Take home:

Less work -> Less recording -> Less samples - Less accurate

Thanks – questions please ... Gracias – cuestiones ...

